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Historical perspective

“First Golden Age” (1964-1974)

» Sagdeev proposes collisionless-shock concept
* High altitude nuclear explosions

 Discovery of the bow shock

* First laboratory experiments

 Early numerical simulations



Most of the early experiments were based on the 0-pinch concept
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Culham J. Paul et al., Nature 208, 133 (1965)

Maryland J. Stamper et al., Phys. Fluids 12, 1435 (1968)
Garching M. Keilhacker et al., Phys. Rev. Lett. 24, 487 (1971)
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USSR, Italy, Columbia, etc ...
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e.g. M. Keilhacker et al., Z. Phys. 223, 385 (1969)

* Most experiments showed strong
“anomalous” electron heating

* Reflected ions were observed only
for super-critical shocks (M,=3)

 Weaker shocks have widths of a few
clw,,

» Super-critical shocks show
double structure in B & n
(“foot” with ~2c/w; width)

* Orbits of reflected ions coincide
with “foot”



“Second Golden Age” (1979-1989)

* Data from extraterrestrial plasmas
= [SEE mission
" planetary bow shocks (Voyager)
" cometary bow shocks
= SN remnants

* Better simulation methods
* Appreciation of electron dynamics at shocks in space (T, >>T,)

* However, only few follow-up experiments in 20 years



More recent experiments with high-power lasers did
not answer many questions
- exploding plasmas: v, < 1000 km/s for intensities 10’ — 107> W/cm?

 oblique & quasi-parallel geometries possible
* large spontaneous fields: MG — few G further from laser-target

NRL: laser-plasma expansion in gas & external B-field (1980-1990)
LANL: laser-plasma expansion in gas-filled chamber (1983)
ILP: laser-plasma and theta pinch gun (1970 — now)
RAL: colliding plasmas in laser-generated B-field (2000-2003)
LLNL: exploding plasmas in external B-field (1990)
LULI: exploding-plasma interaction with gas-jet (2007)

etc. ....

 Typically the high-beta laser-plasmas were not sufficiently magnetized,
- or the background was not sufficiently ionized
 or experiments were too small (mm to cm) and too short

See reviews by R.P. Drake (2000) and Y. Zakharov (2003)



ILP (Novosibirsk): Kl 1-facility, 500 J CO, laser coupled to ©-pinch gun
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Unresolved issues

* Why do laboratory shocks strongly heat electrons,
but those in space do not ?

 What is the formation time of a shock ?
e Can we create Alfvénic shocks in the laboratory ?
* Debris and final spatial distribution

etc.



If we can generate laboratory shocks, what is interesting ?
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D. Winske (LANL)



Opportunities for new laboratory
experiments

* New facilities
= larger lasers,
» lasers & large magnetized plasmas / pinches
* magnetized target fusion experiments

» Better diagnostics
* e.q. proton radiography,
= faster detectors, correlation techniques (turbulence)
» volumetric data sets, efc. ...



Collisionless shock experiment at the
Nevada Terawatt Facility

laser
5% B
s T
Electrode 1 mm
Plasma shell parameters: Plasma regime:
velocity: Vo= 2%107 cm/s resistive diffusion: R, > 30
density: n,=7x10" cm-3
Hall term: (clw,) 2 L,
field strength: B=8-10T
temperature: T,<200 eV, T;<100 eV ion magnetization: 2w/, 2 {,,

length scale: L,=0.2-0.3 mm

R. Presura et al., Astrophys. Space Sci. 298, 299 (2005)
W. Horton et al., Phys. Plasmas 11, 1645 (2004)



LANL-FRC: Plasma gun method
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Piston magnetized plasma with large v, crashes into
target plasma with small v,

T. =200 eV, n=4x10"® cm, B = 0.3 T, v=60 km/s (M,=3.5)

target

size D= 2 cm, shock transit time 1=0.3 us, r;;= 5 mm,
w.T =5, Dl(ciw,) =15, A; = size



Proposal by R.P. Drake - Phys. Plasmas 7, 4690 (2000)

Magnetic Magnetic

:f,‘;':f,an\\m vl Large preformed plasma
' n=5x10"'3 cm3, few eV, D=2 m

and kJ-laser to drive piston
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Plasma Diagnostic

- Laboratory experiments can create conditions where M, >1, D/r; >1, B>1 are
maintained over an adequate number of growth times for MHD turbulence.

* Experiment must be larger than some fraction of a meter



UCLA: Exploding laser-produced plasma

in a large magnetized plasma

) 20 m R
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o He, 2x10"2 cm3 5 eV
)=
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O
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o Wa;zrer:; Large Plasma Device (LAP)

Perpendicular shocks:

V, =500 km/s (M,=2.5)

Size D =50 cm

Shock transit time: 7= 1us
D/(c/wy) =1, W, =1, A;/D>500

C. Constantin et al., Astrophys. Space Sci. 322, 155 (2009)

W. Gekelman et al.



Measurements show super-Alfvénic pulse (M,=2-3)
propagating away from piston
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Facility improvements will significantly increase
the design space for CSW experiments at UCLA

LaB; cathode: 5x10'3 cm3, >10 eV (H, or He?* ?) &
better duty cycle

M,=3-4, c/(w,)=3 cm, 1/w = 0.2 ys

Laser upgrade: >500J (20 ns to several 100 ns) &
15 J @ 2w probe beam for TS

» enough energy to shock entire ambient @ M,=1
« faster blow-off speed

Perpendicular (50 cm): M,=4, D/(c/w,) =15, Tw; S5, A;/D=20

Parallel (20 m): M,=1, D/(c/w;) =300, Tw,; <300 1, A;/D=0.6



UCLA’s Enormous Toroidal Plasma Device (ETPD) could
be a much better laser target for CSW experiments

200 m long @ 5x10'3 cm-3 and 20 eV

* hotter plasmas

* less effected by material walls
* LARGER: (D¢, = 1-2 m, D;= 200 m)

perp

M,=4, D/(c/w;) < 100 , Tw,; =15




Experiments at the National Ignition Facility
could be designed that create CSW at M,>10

* MJ in 20 ns and 192 beams into 10 m chamber
* NIF is now operational and transitioning into a user facility

* photoionized gas
* magnetized flows
» colliding plasmas
* multiple shocks ...

With adequate

magnetization:
(10'3-10"% cm3, few 100 G)

M,>10
D/(clw,;) > 100
TW, > 100
A;/D > 10




Summary

* Laboratory experiments from the past 50 years have
contributed to our understanding of CSW

* Unresolved questions remain (e.g. energy partition,
formation time ...)

e ... and can be addressed with new facilities
(i.e. Dl(clwpi)>10, TW, > 10, M,>10, B,=0°)



Vulcan: Colliding laser-produced plasmas in magnetic field
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» observed features smaller than A,
* no evidence of collisionless shock
* plasma not enough magnetized

N. Woolsey et al., Phys. Plasmas 8, 2439 (2001)



Measurements show super-Alfvénic pulse (M,=2-3)
propagating away from piston
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- fast B-field diffusion L@

* large amplitude shear-waves c 8 8 8 8 &8 8 3

* 2D hybrid simulations predict that c/w ;210 _ .

is required for shock to form



